Search results for "sub-Riemannian geometry"
showing 10 items of 12 documents
Rigidité, comptage et équidistribution de chaînes de Cartan quaternioniques
2020
We prove an analog of Cartan's theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.; Nous montrons un analogue d'un théorème de Cartan, disant que les transformations préservant les chaînes sur le bord d'un espace hyperbolique quaternionien est une transformation projective. Nous donnons un résultat de comptage et d'équidistribution pour une orbite de chaînes arithmétiques dans le groupe de Heisenberg quaternionique.
Corners in non-equiregular sub-Riemannian manifolds
2014
We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of (G.P. Leonardi and R. Monti, Geom. Funct. Anal. 18 (2008) 552-582). As an application of our main result we complete and simplify the analysis in (R. Monti, Ann. Mat. Pura Appl. (2013)), showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth. Mathematics Subject Classification. 53C17, 49K21, 49J15.
Lipschitz Carnot-Carathéodory Structures and their Limits
2022
AbstractIn this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption on the limit vector-fields structure, the distances associated to equi-Lipschitz vector-fields structures that converge uniformly on compact subsets, and to norms that converge uniformly on compact subsets, converge locally uniformly to the limit Carnot-Carathéodory distance. In the case in which the limit distance is boundedly compact, we show that the convergence of the distances is uniform on compact sets. We show an example in which the limit distance is not…
Sub-Riemannian geometry: one-parameter deformation of the Martinet flat case
1998
Conformality and $Q$-harmonicity in sub-Riemannian manifolds
2016
We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.
Mass transportation on sub-Riemannian structures of rank two in dimension four
2017
International audience; This paper is concerned with the study of the Monge optimal transport problem in sub-Riemannian manifolds where the cost is given by the square of the sub-Riemannian distance. Our aim is to extend previous results on existence and uniqueness of optimal transport maps to cases of sub-Riemannian structures which admit many singular minimizing geodesics. We treat here the case of sub-Riemannian structures of rank two in dimension four.
Counting and equidistribution in Heisenberg groups
2014
We strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension $2$. We prove a Mertens' formula for the integer points over a quadratic imaginary number fields $K$ in the light cone of Hermitian forms, as well as an equidistribution theorem of the set of rational points over $K$ in Heisenberg groups. We give a counting formula for the cubic points over $K$ in the complex projective plane whose Galois conjugates are orthogonal and isotropic for a given Hermitian form over $K$, and a counting and equidistribution result for …
Topics in the geometry of non-Riemannian lie groups
2017
Transport optimal sur les structures sous-Riemanniennes admettant des géodésiques minimisantes singulières
2017
This thesis is devoted to the study of the Monge transport problem for the quadratic cost in sub-Riemannian geometry and the essential conditions to obtain existence and uniqueness of solutions. These works consist in extending these results to the case of sub-Riemannian structures admitting singular minimizing geodesics. In a first part, we develop techniques inspired by works by Cavalletti and Huesmann in order to obtain significant results for structures of rank 2 in dimension 4. In a second part, we study analytical tools of the h-semiconcavity of the sub-Riemannian distance and we show how this type of regularity can lead to the well-posedness of the Monge problem in general cases.
Extremal polynomials in stratified groups
2018
We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal subriemannian geodesics in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations.